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An evaluation for a parallel Particle-In-Cell code leveraging heterogeneous hardware is presented. Two parallelization strategies
are investigated on Intel R© Xeon Phi

TM
coprocessors. Hybrid parallelization is implemented to support optional workload offloading

to coprocessors. A performance model is applied to load balance heterogeneous setups. Performance measurements of a benchmark
show the quality of the proposed load balancing for both parallelization strategies.
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I. INTRODUCTION

TYPICALLY used in computational accelerator physics,
particle-in-cell (PIC) simulations calculate the movement

of free charges in electromagnetic fields. Solving those physics
requires a solution of the coupled MAXWELL equations
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and the relativistic NEWTON-LORENTZ equation
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where ~u is the normalized momentum and q,m0, ~r, ~v represent
charge, rest mass, position and velocity of particles. As moving
charges describe a current in eq. (1), a cyclic dependency needs
to be solved for every time step. To solve the fields numerically,
the Finite Integration Technique (FIT) is implemented. For
more information about FIT the reader is referred to [1]
for the general theory and to [4] for a setting with PIC.
For the time integration of the fields a leap-frog scheme is
chosen. For the integration of the eq. (2) the well known
Boris scheme is used. Charge conservation is ensured by using
an algorithm described in [2]. As equations 1 and 2 lead to
separate computations within this approach those are referred
as computational kernels.

A. Heterogenous Computing

Modern HPC systems provide diverse processor architec-
tures, making efficient parallel computing a difficult task.
Keeping the physical limitations with high clock speed rates
and energy consumptions of processors in mind, the attrac-
tiveness of modern multicore processors becomes obvious. To
leverage their benefits, hybrid parallelization strategies become
necessary. As the variety of heterogeneous computing systems

will increase in the future, this motivates investigations for re-
alistic performance and scalability models to explore potentials
for code optimizations and load balancing strategies.

II. PARALLEL PARTICLE-IN-CELL

To minimize the overall runtime, a suitable parallelization
strategy needs to be chosen. Such a strategy may be influ-
enced by application specific properties, e.g. different particle
distributions or geometry resolutions and by hardware specific
properties such as vectorization in cpu’s, multicore systems
and coprocessors. In this work Intel R© Xeon Phi

TM
coprocessors

are evaluated, for PIC parallelization strategies. The existing
parallel PIC code facilitates distributed and shared memory
parallelization using MPI and OpenMP. To decrease communi-
cation costs, non-blocking communication is implemented with
MPI. Two strategies for PIC parallelization from [5], [6] and [7]
are investigated. 1.) A strategy where the whole computational
domain is decomposed by the number of computing nodes
available. Every node calculates the DOF’s for the fields and
the trajectories for the particles, that are moving within the
domain assigned to the node. Hence only uniform particle
distributions, where every node calculates on equal number
of particles, benefit from this strategy. 2.) A strategy where
only the field DOF’s are distributed to the nodes, whereas the
particle calculations are equaly distributed independent from
their position. This guarantees an equal workload for every
node, with the drawback of additional communication costs.
This strategy is characterized by a satisfying weak scaling
behaviour, but may not be the fastet solution.

A. Performance Expectations and Load Balancing

From a performance bottleneck perspective computational
kernels can be classified as memory bounded and cpu bounded.
Measurements show that solving eq. (1) leads to memory
(bandwidth) bounded calculations, whereas the particle solver
for eq. (2) tends to be cpu bounded. Using one Intel R© Xeon
Phi

TM
coprocessor 7120P with 16GB main memory, 60 effective

cores each with four hardware threads, 1.238 GHz clock speed
and a peak memory bandwidth of 352 GB/s, the field kernel
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Fig. 1. Simplified setup of the Texas Cluster at the Graduate School of
Computational Engineering. The Intel R© Xeon Phi

TM
card is connected to the

host node over PCI Express. Load balance is measured for two nodes where
only one node holds a coprocessor.

(eq. 1) can make use of the high memory bandwidth and
the particle kernel can leverage the highly concurrent SIMD
nature of the particle solver, using up to 240 hardware threads
available on the card. As the computations of the particle solver
take up to 80% of one time step, particle integrations and
current density calculations are offloaded to the Xeon Phi

TM

coprocessor. By counting all floating point operations #opj
and the number of network bytes exchanged #xj form kernel
j and taking the communication bandwidth bk for node k into
account, the performance is estimated with

lk ≤

Kernel∑
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Kernel∑
j=0

#opj
lkj

+

Kernel∑
j=0
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bk

. (3)

Using roofline models [3] for all hardware architectures, the
performance lkj of all kernels can be estimated by evaluating the
operational intensity for each kernel. The operational intensity
is defined as the ratio of the number of floating point operations
(#op), to the number of transferred bytes from the last level
cache to the main memory. The performance may be measured
in Flops or e.g. particle integrations per second. Using this
performance model, a static load balancing algorithm using
recursive orthogonal besectioning is applied, improving the
computational balance in the setup shown in fig. (1). The setup
consists of two nodes where only one is supported with a
coprocessor. Using our performance model both nodes should
get the same execution time per time step.

III. RESULTS

The performance model proposed is being investigated by
simulating electron bunches with free movement in a tube
with a constant electric field and perfect electric conducting
boundaries as a benchmark problem. Figure 2 shows the
workload balance for each time step for the load balanced and
unbalanced case, evaluated for both parallelization strategies.
Workload balance is defined as the timespan between the first
MPI process being finished, waiting for the last process. It
is normalized in such a way, that a value 1 refers to a perfect
balanced execution and value 0.5 to the case where the slowest
MPI process needs twice the execution time of the fastest MPI
process, until he is finished. Strategy 1 improves imbalance
over time as the particle bunches are getting equally distributed
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Fig. 2. Measurements of two parallelization strategies executed with the
setup shown in fig.1. Balancing workload with eq.3 improved the execution
of strategy 1. by up to 18%. Workload balance of strategy 2 is improved by
12%.

in the computational domain. In this strategy the process with
the most particles at initialization was supported with the
coprocessor. The imbalance of strategy 2 is mainly caused by
the coprocessor.

IV. CONCLUSION

Two parallelization strategies for parallel Particle-In-Cell
codes have been evaluated concerning the load balance for
heterogeneous hardwarein a setup shown in fig. (1), including
the Intel R© Xeon Phi

TM
coprocessor. The imbalance for paral-

lelization strategy 1 and 2 could be reduced by up to 18% and
12%, respectively. Further work will focus on data distribution
an parallel efficiency achieved with the coprocessor.
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